Circuit theory for decoherence in superconducting charge qubits
نویسنده
چکیده
Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits. In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative environment is taken into account. Moreover, both self and mutual inductances of the circuit are fully included.
منابع مشابه
Multi-level quantum description of decoherence in superconducting qubits
We present a multi-level quantum theory of decoherence for a general circuit realization of a superconducting qubit. Using electrical network graph theory, we derive a Hamiltonian for the circuit. The dissipative circuit elements (external impedances, shunt resistors) are described using the Caldeira-Leggett model. The master equation for the superconducting phases in the BornMarkov approximati...
متن کاملDecoherence in Solid State Qubits
Interaction of solid state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review we discuss how decoherence affect...
متن کاملUCSB final report for the CSQ program: Review of decoherence and materials physics for superconducting qubits
We review progress at UCSB on understanding the physics of decoherence in superconducting qubits. Although many decoherence mechanisms were studied and fixed in the last 5 years, the most important ones are two-level state defects in amorphous dielectrics, non-equilibrium quasiparticles generated from stray infrared light, and radiation to slotline modes. With improved design, the performance o...
متن کاملFlux-based superconducting qubits for quantum computation
Superconducting quantum circuits have been proposed as qubits for developing quantum computation. The goal is to use superconducting quantum circuits to model the measurement process, understand the sources of decoherence, and to develop scalable algorithms. A particularly promising feature of using superconducting technology is the potential of developing high-speed, on-chip control circuitry ...
متن کاملSuperconducting Qubits Ii : Decoherence
This is an introduction to elementary decoherence theory as it is typically applied to superconducting qubits. Abbreviations: SQUID – superconducting quantum interference device; qubit – quantum bit; TSS – two state system
متن کامل